Multi-View Visual Question Answering with Active Viewpoint Selection
نویسندگان
چکیده
منابع مشابه
Active Learning for Visual Question Answering: An Empirical Study
We present an empirical study of active learning for Visual Question Answering, where a deep VQA model selects informative question-image pairs from a pool and queries an oracle for answers to maximally improve its performance under a limited query budget. Drawing analogies from human learning, we explore cramming (entropy), curiosity-driven (expected model change), and goal-driven (expected er...
متن کاملVisual Question Answering with Memory-Augmented Networks
In this paper, we exploit memory-augmented neural networks to predict accurate answers to visual questions, even when those answers rarely occur in the training set. The memory network incorporates both internal and external memory blocks and selectively pays attention to each training exemplar. We show that memory-augmented neural networks are able to maintain a relatively long-term memory of ...
متن کاملVisual Question Answering with Question Representation Update (QRU)
Our method aims at reasoning over natural language questions and visual images. Given a natural language question about an image, our model updates the question representation iteratively by selecting image regions relevant to the query and learns to give the correct answer. Our model contains several reasoning layers, exploiting complex visual relations in the visual question answering (VQA) t...
متن کاملInvestigating Embedded Question Reuse in Question Answering
The investigation presented in this paper is a novel method in question answering (QA) that enables a QA system to gain performance through reuse of information in the answer to one question to answer another related question. Our analysis shows that a pair of question in a general open domain QA can have embedding relation through their mentions of noun phrase expressions. We present methods f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20082281